

Our Expectation in SpA Management.

Kurt de Vlam, MD, PhD

Department of Rheumatology, University Hospitals Leuven

Skeletal Biology and Engineering Research Center (SBE),

Dept Development and Regeneration, KULeuven, Belgium

Disclosures

- Grants/Research Support: Celgene, MSD
- Speaking Engagements/Honoraria: Amgen, Pfizer, Eli Lilly, Abbvie, UCB, Novartis,
- Consulting Fees: Pfizer, Abbvie, J&J , Eli Lilly, UCB, Novartis, Amgen
- This presentation is the full property of Kurt de Vlam. All statements made are at the full responsibility of Kurt de Vlam

Axial SpA and PsA: Resetting Our Expectation in Axial SpA and PsA Management

- Axial Spondyloarthritis
 - 1. the updated ASAS-EULAR recommendations
 - 2. Radiographic versus non radiographic axial spondyloarthritis
 - 3. Gender differences in ax-SpA
 - 4. Treatment target: Treat to Target in ax-SpA
 - 5. Tapering: worth the effort?
 - 6. Difficult to treat SpA

ASAS-EULAR recommendations for the managment of axial spondyloarthritis (2022 update)

	Recommendations		LoA(0-10)	
		Levels of evidence/grade of recommendation	Mean (SD)	% with score >8
9	TNFi, IL-17i† or JAKi‡ should be considered in patients with persistently high disease activity despite conventional treatments current practice is to start a TNFi or IL-17i†.	1a/A	9.2 (1.2)	94
10	If there is a history of recurrent uveitis or active IBD, preference should be given to a monoclonal antibody against TNF In patients with significant psoriasis, an IL-17i† may be preferred.	2b/B (uveitis, IBD) 1a/B (psoriasis)	9.1 (1.8)	97
11	Absence of response to treatment should prompt re-evaluation of the diagnosis and consideration of the presence of comorbidities.	5/D	9.5 (0.8)	97
12	Following a first b/tsDMARD failure, switching to another bDMARD (TNFi or IL-17i†) or a JAKi‡ should be considered.	2b/B (TNFi after TNFi failure) 1b/A (IL-17i after TNFi failure) 5/D (all other switches)	9.3 (1.1)	88

Algorithm based on the ASAS-EULAR recommendations for the management of axial spondyloarthritis (axSpA).

Rheumatologist's diagnosis of axial SpA

and

Elevated CRP or positive MRI-SIJ or Radiographic sacroiliitis*

and

Failure of standard treatment

All patients

At least 2 NSAIDs over 4 weeks (in total)

Patients with predominant peripheral manifestations

One local steroid injection if appropriate

Normally a therapeutic trial of sulfasalazine

and

High disease activity: ASDAS ≥ 2.1

and

Positive rheumatologist's opinion

ASAS-EULAR recommendations for the treatment of patients with axial SpA with b/tsDMARDs.

ASAS-EULAR recommendations for the continuation of b/tsDMARDs.

Consider to continue b/tsDMARDs if after at least 12 weeks of treatment

ASDAS improvement ≥ 1.1

Positive rheumatologist's opinion to continue

There are some differences between SpA features for patients with r-axSpA vs. nr-axSpA

Similar between r-axSpA and nr-axSpA Age

Inflammatory back pain

Peripheral arthritis

Dactylitis

Uveitis

Good response to NSAIDs

Family history

Predictors of radiographic progression from nr-axSpA to r-axSpA over 5 years: the PROOF study

Patients who Progressed

- Among 246 patients with nr-axSpA who had ≥1 follow-up SIJ radiograph:
 16% (n=40) progressed from nr-axSpA to r-axSpA
- Mean time to progression:2.4 years (0.9-5.1 years)

nr-axSpA 16% r-axSpA

Predictors of Radiographic Progression

Male gender

Fulfilment of the imaging arm (i.e., the presence of sacroiliitis on MRI)

HLA-B27 positivity

Good response to NSAIDs

ASAS40 responses from clinical trials in AS

ASAS40 responses from clinical trials in nr-axSpA

There are sex differences in the prevalence of axSpA subtypes

Males and females show differences in disease activity, function, and physical measures

Gender effects in TNF-inhibitor treatment response

Study	AS or axSpA	Study design	Participants (male:female)	Treatment response (male vs female)	TNF-naive population	Follow-up period
Rusman et al., 2021	AS	Prospective cohort study	235:121	ASDAS: 64% vs 47% (RR 1.4, 95% CI 1.1–1.9) ^a	Yes	6 months
Sieper et al., 2019	nr-axSpA	Open-label prospective study	295:301	ASDAS partial remission: OR 2.4, 95% CI 1.6–3.6 ^a	Yes	12 weeks
Hebeisen et al., 2018	AS	Prospective cohort study	294:146	ASAS20: OR 0.34, 95% CI 0.16–0.71 ^a ; ASDAS <1.3: OR 0.10, 95% CI 0.03–0.31 ^a (inverse female/male)	Yes	1 year
van der Horst- Bruinsma et al., 2013	AS	Pooled data clinical controlled trials	957:326	ASDAS: 89.4% vs 68.4% ^a	Yes	12 weeks
Arends et al., 2011	AS	Prospective longitudinal observational cohort	152:68	ASAS20 and ASAS40: greater response in men than in women ^a	Yes	ASAS20: 3 months and 6 months; ASAS40: 6 months
Glintborg et al., 2010	AS	Observational cohort	364:239	Change in BASDAI: 27 vs 22	Yes	6 months

prospective studies

Men shows greater adherence to anti TNF R/

Study	AS or axSpA	Study design	Participants (♂/♀)	Treatment adherence ^a (♂/♀)	Study time period
Hebeisen et al., 2018	AS	Prospective cohort study	294/146	5.2 vs 2.9 years ^b	12 years
Al Arashi et al., 2018	AS	Prospective cohort	205/75	91.6 vs 34.4 months ^b	Mean 6.3 years
lannone et al., 2017	SpA	Prospective observational cohort	72/75	23.0 vs 19.6 months ^b	2 years
Rusman et al., 2018	AS	Prospective cohort	74/48	44.9 vs 33.4 months ^b	Mean 4.8 years
Flouri et al., 2018	AS	Prospective observational cohort	446/115	HR for R/ discontinuation in $\circlearrowleft'/\$: 0.73 (95% CI 0.51–1.04)	10 years
Arends et al., 2011	AS	Prospective longitudinal observational cohort	152/68	HR for R/ discontinuation in \mathcal{O}'/\mathcal{P} : 0.41 (95% CI 0.25–0.66) ^b	6 months
Kristensen et al., 2010	AS	Prospective observational cohort	182/61	HR for R/ discontinuation in \mathcal{O}'/\mathcal{P} : 0.36 (95% CI 0.19–0.68) ^b	2 years
Glintborg et al., 2010	AS	Observational cohort	364/239	HR for R/ discontinuation in \mathbb{Q}/\mathbb{O} : 1.46 (95% CI 1.07–2.00) ^b	5 years
Yahya et al., 2018	axSpA	Retrospective review of routinely recorded clinical data	386/115	No gender effects observed	1, 5 and 10 years

Estimated retention rate during the 1st year of secukinumab treatment according to diagnosis, gender, and BMI.

Diagnosis	Retention %	95%CI	Gender	Retention %	95%CI	ВМІ	Retention %	95% CI
AxSpA	82%	(74%; 89%)	Female	95%	(93%; 97%)	<30 kg/m ²	93%	(89%; 96%)
						≥30 kg/m ²	99%	(98%; 100%)
			Male	77%	(68%; 86%)	<30 kg/m ²	80%	(72%; 89%)
						≥30 kg/m ²	64%	(50%; 78%)
PsA	78%	(70%; 87%)	Female	66%	(54%; 79%)	<30 kg/m ²	57%	(42%; 73%)
						≥30 kg/m ²	91%	(87%; 95%)
			Male	89%	(84%; 93%)	<30 kg/m ²	91%	(88%; 96%)
						≥30 kg/m ²	81%	(73%; 89%)

Patients (n = 138) diagnosed with AxSpA by ASAS (n = 77) or PsA by CASPAR) (n = 61)

Treatment goals in chronic arthritis

Potential treat to target strategies in axial spondyloarthritis

Risk	Disease		Structural damage			Cardiovascular diseases			
Reversible Predisposing factor	Smoking	Smoking		Disease activity	Smoking	NSAID intake	Obesity	Hypertension	Diabetes
Outcome measure	Smoking status	Smoking Status	CRP*	ASDAS	Smoking Status	- dose and frequency	Body Mass index	Blood pressure	Hb A1C
Threshold (TARGET)	Cessation	Cessation	1 1	<1.3 or <2.1	Cessation	Cessation?	Normal range	<130mHg systolic <80 mHg	<7%
Time to Reach the target	<6 months	<6 months	<6 months	<6 months	<6 months	<6 months	<12 months	diastolic <3 months	<3 months

What currently defines HCPs treatment & management of AxSpA (AS & nr-AxSpA)?

✓ Do you employ treat-to-target strategies in your practice? Which target do you aim for?

Treat-to-target algorithm for axial spondyloarthritis

TICOSPA:

ASAS-HI improvement ≥30%, ASDAS LDA status and ASAS40 response estimated at 48 weeks.

■ T2T/TC ■ UC

 Treat-to-target in axial spondyloarthritis — what about physical function and activity

Factors that affect physical function in axial spondyloarthritis.

<u>Interventions</u>	<u>Included studies</u>			<u>SMD, 95% CI</u>
Physical activity or exercise			1	
Systemic Sclerosis	[48, 78]		l .	-0.66 [-1.33, 0.02]
Spondyloarthritis	[39, 47, 53, 64, 69, 71, 77, 106]		⊢	-0.94 [-1.23, -0.66]
Sjogren's Syndrome	[50, 62]	-	•	-0.83 [-2.13, 0.47]
Systemic Lupus Erythematosus	[44, 56, 60, 66, 72]		——	-0.54 [-1.07, -0.01]
Rheumatoid Arthritis	[40, 42, 45, 51, 52, 54, 57, 59, 60, 63, 75, 102]		H●H	-0.23 [-0.37, -0.10]
Psychoeducational interventions				
Systemic Lupus Erythematosus	[80, 86, 90]		⊢•	-0.19 [-0.46, 0.09]
Rheumatoid Arthritis	[81, 83-85, 87-89, 91-97, 99-102]		⊢●⊣	-0.32 [-0.48, -0.16]
Physical Activity or Exercise + Psychoeducational				0.20 / 0.50
Rheumatoid Arthritis	[104, 105]			-0.20 [-0.53, 0.14]
Follow-up model in consultations				
Rheumatoid Arthritis	[108, 110]		⊢	-0.05 [-0.29, 0.20]
	-2	2.5 -2 -1.	.5 -1 -0.5 0 0.5	5

Difficult to treat? Difficult to manage?

Difficult to treat RA patients are well defined, but can the concept apply beyond RA?

EULAR definition of D2T RA

 Treatment according to EULAR guidelines and failure of ≥2 b/tsDMARDs (with different mechanisms of action), after failure of csDMARD

 Suggestive evidence of disease activity/progression, defined as ≥1 of;

- At least MDA (DAS28-ESR>3.2 or CDAI>10
- Signs (including biology and imaging) and/or symptoms suggesting active disease (joint or otherwise)
- Inability to reduce systemic steroid therapy (<7.5 mg/day prednisone equivalent)
- Rapid radiographic progression
- Controlled disease, but with persistent RA symptoms causing reduced quality of life

 Management of signs and/or symptoms is perceived as problematic by the rheumatologist and/or the patient

All 3 criteria must be present

Caveats for applying to axSpA

- Only 3 classes of Tx (in RA there are 5)
- Could be defined as ASDAS-CRP >1.3 or possibly BASDAI >4/10
- CRP within normal limits is frequent in axSpA
 MRI primarily used at diagnostic stage
 Can allow for consideration of extra-rheumatological anifestations (e.g., uveitis, PsO and IBD)

icosteroids not indicated in axSpA pted to "unable to reduce/discontinue NSAIDs"

- Not applicable to axSpA
- Could be applied to axSpA and might include persistent pain
- Applicable but subjective

Factors associated with D2T axial SpA

	Bivariate analysis		Multivariate analysis	S
Characteristic	OR (95% CI)	P value	OR (95% CI)	P value
Female sex	1.93 (1.75 to 2.14)	<0.001	1.79 (1.61 to 1.99)	<0.001
Peripheral symptoms	2.02 (1.84 to 2.23)	<0.001	1.84 (1.67 to 2.04)	<0.001
Psoriasis	1.61 (1.46 to 1.77)	<0.001	1.33 (1.20 to 1.47)	<0.001
Inflammatory bowel disease	1.05 (0.91 to 1.22)	0.50	_	_
Severe uveitis	1.43 (0.78 to 2.65)	0.24	_	_
Diabetes	1.14 (0.95 to 1.38)	0.17	_	_
Dyslipidaemia	1.13 (0.98 to 1.30)	0.11	_	_
Hypertension	1.24 (1.11 to 1.38)	<0.001	1.20 (1.06 to 1.36)	<0.001
Severe smoking	1.47 (1.22 to 1.78)	<0.001	_	_
Severe obesity	1.99 (1.52 to 2.59)	<0.001	_	_
Depression	2.19 (1.98 to 2.43)	<0.001	2.09 (1.87 to 2.33)	<0.001

- Is the diagnosis correct?
- Is the disease still active (consider C-reactive protein level, erythrocyte sedimentation rate, sacroiliac joint or spine MRI)
- What am I treating? Inflammation or structural damage?
- Is the patient compliant with treatment?
- Is fibromyalgia, depression or sleep disturbance causing the symptoms?
- Have I set realistic expectations with the patient (and myself)?
- Should I try sacroiliac joint corticosteroid injections, nerve ablation (pain clinic), intravenous pamidronate (a bisphosphonate), maximize NSAIDs, or conventional synthetic DMARDs?

Tapering – withdrawal in axSPA

Study	Study design; number of patients	Strategy	Results
ABILITY-3	Multi-centre, randomized, double-blind; 305	Adalimumab withdrawal. Patients who achieved inactive disease (ASDAS <1.3) with open-label adalimumab treatment were randomly assigned to treatment with adalimumab or placebo for 40 weeks	70% of patients continuing adalimumab did not experience flare, compared with 47% of those who received placebo
RE-EMBARK	Multi-centre, open-label, phase IV trial; 119 (in the withdrawal phase)	Etanercept withdrawal. Patients who achieved inactive disease after treatment with etanercept (50 mg subcutaneously weekly) for 24 weeks discontinued treatment	75% of patients experienced flare within 40 weeks ; 50% experienced flare within 16 weeks. The probability of experiencing ≥1 flare after etanercept withdrawal increased from 22% at week 4 to 67% at week 40
C-OPTIMISE	Two-part multi-centre phase IIIb, open-label; 313 randomized at week 48	CZP dose reduction or withdrawal study. Patients with ASDAS <1.3 after open-label treatment with CZP for 48 weeks ^a were randomized to CZP 200 mg subcutaneously every 2 weeks (CZPQ2W), CZP 200 mg subcutaneously every 4 weeks (CZPQ4W) or placebo for a further 48 weeks	83.7% of patients in the CZPQ2W group and 79.0% in the CZPQ4W group remained flare free through weeks 48–96, compared with 20.2% of patients in the placebo group
COAST-Y	Double-blind RCT long-term extension; 155	IXE withdrawal Patients completing COAST-V, COAST-W and COAST-X trials (with ASDAS <1.3 at week 24 ^b) were enrolled and treated with open label ixekizumab. Patients were randomized to IXE 80 mg Q4W, 80 mg Q2W or placebo for the next 40 weeks	83% of patients are flare free compared with 54% of those in the placebo group

Proportion (%) of patients who remained flare-free through 104 weeks.

estimate of time to first flare (weeks) through 104 weeks in placebo (IXE withdrawal) vs continuous IXE

Heatmap diagram showing ASDAS disease activity status through 104 weeks

I am happy to take questions

Department of Rheumatology, University Hospitals Leuven

Skeletal Biology and Engineering Research Center, Department of Development and Regeneration,

KU Leuven

Spondyloarthropathy Unit

K de Vlam

Rik Lories

Barbara Neerinckx

Alla Ishchenko

Pierrot Lebughe

Margot van Mechelen

Marlies Kaerts

Thijs Swinnen

Myroslawa Kulic

ÖVARTIS